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1. INTRODUCTION

For n = 1,2,3,... and 1 <r <n, we define

Y'",r = {S E cn-r-I(IR): Sex) is bounded on IR and on

(v, v + 1) it equals a polynomial of degree

<n, V v E 2:'}.

Now take points 0 <at < a z < ." < a r < 1, where at = 0 if n + r is odd,
a l > 0 otherwise, and the non-zero aj are symmetric about i.

Suppose that for s = 1,2,..., r, we have

(1)

Then it follows from the work of Micchelli [3] that there is a unique
element .:E..,rY in Y'",r such that

.:E..,r y(v + as) = y~s), v E 2:', s = 1,2,..., r.

We define 11.:E..,rll = suP{II.:E..,rYII: Ilylloo = 1}, the "nth Lebesgue constant"
for the interpolation considered. For r = n or n - 1, the above interpolation
reduces to polynomial interpolation. In these cases Erdos [1] has shown
there exists a constant c such that

2
II.:E.. rll ~ -log n - c,, n

for any choice of a l , ... , ar •

Moreover Rivlin [5] has shown that if r = nand

(2)

(2j - l)n
aj=cos ,

2n
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j = 1,2,... , n,



then
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2 2 ( 8 )II~ nil =-log n +- log-+ y + 0(1),. n n n
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(3)

where y is the Euler-Mascheroni constant.
For r = 1, the above interpolation reduces to ordinary cardinal spline

interpolation and for this case Richards [4] has shown that

2 2 ( 4 )II~ III = -log n + - 2log - + Y + 0(1).. n n n
(4 )

In this paper we prove the following result, which reduces to (4) when
r = 1. Much of our proof follows the approach of Richards in [41.

THEOREM 1. For fixed points 0:< at <a 2 < ... < a r < 1, with the non­
zero aj symmetric about i, there are constants M I' M 2 such that

1I~.rll = M 1 Log n +M 2 +0(1), (5)

where n is restricted to have the same parity as r if a I >0 and different
parity from r if a l = O. Moreover M I ? 21n with equality iff

or

In these cases,

2j -1
a.=--,

J 2r

j-I
aj =--,

r

j= 1,..., r,

j= I,..., r.

M 2 = ~ (2 log ~ +y).

2. PRELIMINARIES

(6)

Fix points 0:< a l < a 2 < .. , <a r < 1 with the non-zero aj symmetric
about 1and take n ? r, where n + r is odd iff a I = O.

For any x in IR, -n < u < n, u i= 0, and 1 :< s :< r, we define

(7)
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where the summations are taken over all k of the same parity as rand

PI = ai' I*, s,

=x, 1= s.

Next define Sex; u) = eIUXns(x, u).
These definitions are generalisations of work of Schoenberg in [6]. For

taking even nand r = 1 we have

. ,",co=_ (e"i(2k+llx/(u + (2k + l)n)n)
Sex' u) - e1UX =L...=.:k::.--=co::'::='_-.,._...:.....;'------.:..___=____~
,- Lr= -co (u + (2k + l)n)-n

. '"' co (ehikX/(v +2kn)n)= e1UX L...k= -co
Lr=-co (v +2kn)-n '

where v = u + n,

and this is precisely Schoenberg's exponential Euler spline Sn_l(x; eiv ).
In general Sex; u) is a linear combination of exponential Euler splines of

degrees n - 1, n - 2,..., n - r and so S(-; u) is in ~,r'

Now n sex, u) is a continuous function of x and u, u *' 0, and Insex, u)1 =
IS(x; u)1 ~ 11y;,.rII. Define

1 " .Ls(x) = - f elu(x-aslns(x, u) duo
2n -It

(8)

Then L s is in ~,r and Ls(aj + v) = ~js~vO' v in 71, j = 1,2,..., r.
We shall be interested in the behaviour of ns(x, u) as n~ 00. Now if r is

even,

det(Lr= -co (ehikf},/(u + 2kn)n-m+ 1))~,m= I

ils(X' u) = det(Lr= -co (e2"ika,/(u + 2kn)n-m+ Im.m= I

Lk
lo

••• ,kr {V(kl"'" kr) D.i= t (e2"ikjf}j/(u + 2kj n)")}
= Lk, ..... k

r
{V(kl"'" kr ) n.i=1 (ehikjaj/(u + 2kj n)")} ,

where for any numbers at ,..., an we denote by V(al ,..., a r ) the Vandermande
determinant

det(a~-I)~,m=1= n (a k - aj ).

1 <,j<k<,r
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where N(k 1"'" k r) = det(e2"ikmlll)~.m= I and D(k1'"'' k r) = det(e2"ikmal)~.m = I'

We might expect that as n --+ 00, each summation in (9) is dominated by
the largest two terms and thus ns(x, u) is close to

.os(x,u)
[
V(-r/2, ... , r/2 - I)N(-r/2, ... , r/2 - 1)(u + rnr ]

+ V(-r/2 + 1,..., r/2)N(-r/2 + 1,..., r/2)(u - rnr
[
V(-r/2,... , r/2 - 1) D(-r/2,... , r/2 - 1)(u + rn)n ]

+ V(-r/2 + 1,... , r/2) D(-r/2 + 1,..., r/2)(u - rnr
After simplification we find

and

where

Re .os(x, u) = B.(x)/V,

(10)

(11 )

and

and

A .(x) = e(r-I)"Ha,-x) sin n(as - x) V(e 2"i/lI, ... , e 2nillr ), (12)

(14)

A similar calculation for odd r produces the same formulae (10) to (14).
The following lemma states in what sense n s(x, u) is close to .0s(x, u) for

large n.

LEMMA 1. If x"* aj , j = 1,... , r, then {Re ns(x, u) - Re .os(x, u)} and
u - I {1m n s(x, u) - 1m .0s(x, u)} both converge to zero uniformly in u on
(0, n) as n --+ 00.

Proof We give the proof for even r, the case of odd r following
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similarly. For simplicity we write u = 2nv. Then from (9), .Q,(x, u) = N/D,
where

D is the same as N with N(k l , ... , kr) replaced throughout by D(k J,. .., kr), and
the summations are taken over all (k l , ••• , kr) with k l < ... < kr and not equal
to (-r/2,...,r/2-1) or (-r/2+ 1,... ,r/2).

We shall show

(16)

(with summation as in (15)) converges uniformly to zero on (O,~) as n ---+ 00.

Since IN(k p ... , kr)l, ID(k p ... , kr)1 ~ r!, this implies .Q,(x, u) converges
uniformly to .os(x, u) on (0, n) as n ---+ 00.

Now for k~O and I~k or I~-k-l,

(
V +k)It & (2k + 1 )It
V + I "': 21 + 1 '

and for k <0 and III ~ Ikl,

(~)It (1:..-)"
v+1 ~ I '

So for large enough n,

VvE [O,n

Vv E [0, H

x (v) ~ [ max Ik. _ k.II(I/21r(r-l)' I(v - r/2)1t ... (v + r/2 - 1)" IIt I<;i<i<r J I ...... (v + k l )" ... (v + k
r
)"

l
00 1(I/21r(r-l) 00 (2 It 00 3 ) It

~ 2r L It L 1(l/21r(r~ I) -) L 11/2r(r~ I) (-

1=1 I 1=2 I 1=3 I
lodd 1 even lodd

~r 1(I/2)r(r-1) (7r-(r!)(l/2)r(r-J) (

Leven
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1

00 00 I (l/Z)r(r-I)-n

= 2r(r!)(l/z)r(r-l) L l(l/Z)r(r-l)-n L (-)
1=1 I=Z 2
lodd leven
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x \", (+)(I/Z)r(r-l)-n

1=3
lodd

00

I=r
leven

(~f/Z)r(r-I)-n_ I (

<2r(r!)(I/Z)r(r-l) ) [~r (n(I/Z)r(r-l)-nr-I (

Leven

1[I+r (r+r
2

)n-(l!2)r(r-l)-i]r_ 1 1<2r(r!)(l/Z)r(r-l) I I

(
r n-(l/2)r(r-I)-1<2zr(r!)(I/Z)r(r-l) r ~) (17)

So Xn(v) converges uniformly to zero on (O,!) as n~ 00. Now noting
that N(k l ,•.• , kr ) = N(-k l , ••• , -kr ) and D(k , ,..., kr ) = D(-k l , ..• , -kr ) =
(-1)( I/Z)r+n D(k l , ••• , kr ), we have from (9) that

Thus to show u -I {1m ns(x, u) - 1m .6s(x, u) l converges to zero uniformly
on (0, n) as n ~ 00, it is sufficient to show

Yn(v) = V-I I IV(k 1 ,· .. , k r )

Xlf~ (v + kj)-n - (-It)J (v - k)-n (

X (v - ;r... (v + ; - 1rI

(with summation as in (15)) converges uniformly to zero on (O,!) as n ~ 00.

We shall prove this for even n, the case of odd n following similarly.
Now assuming (v + kit .. · (v + krt < (v - kIt· .. (v - krt we have
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~ 11 _ (v +klY (v + krY /
v / (v - klY (v - kr)n \

c..!!- 11 - Iv+/11 .. ·1 +Itl /
~v / Iv-/11· .. lv-ltll

(where II'"'' It are the non-zero k l ,..., kr)

~!!- 1(lI- v)", (It-v)-(II +v)· .. (It+v)/
v I (II-V)'" (It-v) \

c.. 2n(1/11 + 1) ... (iltl + 1)
~ III - v I '" lit - v I
~ 2n4 r

•

Thus Yn(v)~n4r+lXn(v) and its follows from (17) that Yn(v) converges
to zero uniformly on (0, D as n~ 00. I

Now it follows from the work of [31 that for any y as in (1), and L s

defined as in (8),

r 00

(~,rY)(x)= L L y~S)Ls(x - v).
5=1 v=-oo

So

r 00

II~A= max L L ILs(x-v)l·
O<x<1 s=1 v=-oo

(18)

We therefore proceed to examine the sign of L s(x), using a method similar
to that of Lipow in [21.

If IE Y'",r is periodic with period P, we let Z(f), the number of zeros of
I in [0, P), where zeros are counted according to multiplicity, an interval on
which I vanishes is counted as a zero of multiplicity n, and a jump through
zero is counted as a zero of multiplicity one.

LEMMA 2. IfIE Y'",r has integral period P, then

Z(f)~Pr,

~Pr- 1,

if Pr is even,

if Pr is odd.

Proof. It follows from Rolle's theorem that Z(f) ~ Z(f') ~ ... ~
Z(/(n-r»). But I(n-r) is a polynomial of degree r - 1 on each interval
(v, v + 1) and so Z(f(n +r») ~ Pr with strict inequality if Pr is odd. I
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LEMMA 3. The zeros of L s are simple and occur only at aj + v,
j = I,... , r, v Ell, except when v =°and j = s.

Proof We give the proof for even nand r, the other cases following
similarly. For m = 1,2,... , let L s.mE SI;,.r satisfy

L s,m(2km +as) = I,

L s•m«2k + I)m +ar + I-S) = -I,

Vk Ell,

V k Ell,

and Ls.m(v + uj ) = 0, for all other v Ell and a l , ... , ar'
Then Ls,m(x) is antisymmetric about x = !(m + I) and x = !(3m + 1).

Also Ls.m(v + uj ) = °for all v = 0,..., 2m - 1 and j = 1,..., r except for v = 0,
j = s and v = m, j = r + 1 - s. Since Ls,m is periodic of period 2m, Lemma I
tells us that these are the only zeros of Ls,m'

Now Ls.m(x) = 'L'r=-oo Ls(x - 2km) - 'L~ -00 L r+I-S(X - (2k + l)m)
and so ILs.m(x) - Ls(x)1 ~ 'Lk*O ILs(x - 2km)1 + 'L'r= -00 ILr+l-S(X-
(2k + 1)m)l. It follows from the work of [3) that Ls(x) and L r+I-S(X) decay
exponentially and thus Ls.m(x) converges locally uniformly to Ls(x) as
m~ 00. The result follows. I

3. PROOF OF THEOREM 1

Fix x with ak _ 1 < x <ak for some 1~ k ~ r, where a o = ar - 1. Then it
follows from Lemma 3 that for s = 1,..., k - 1,

sgn Ls(x - v) = (_1)s+k+rv,

= (-1 Y+k +rv + I,

and for s = k,..., r,

sgn Ls(x - v) = (_1)S+k+rv,

= (-1 Y+k +rv + I,

Thus, if s = 1,..., k - 1,

N

2: ILs(x - v)1
l'=-N+ 1

v= 1,2,3,... ,

v = 0, -1, -2,...

v = 0,1,2,...,

v = -1, -2, -3,....
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(~l)S+k." . U
= . j e'U(x-as-I/Zl ns(X, u)(1 - cos Nu) cosec - du

2m . _" 2

(_l)s+k ." . U
= 2n J_" Im{e,u(X-as-l/Z)ns(x, u)}(1 - cos Nu) cosec 2'du.

Similarly if s = k,..., r,

N-I

L ILs(x - v)1
v= -N

(_l)S+k ." . U
= 2n L" 1m {e'U(X-as+l/Zlns(x,u)}(I-cosNu)cosec2'du.

Now it follows from Lemma I that for large enough n, 1m n sex, u) = O(u)
as u -+ 0 and it follows from the Riemann-Lebesgue Lemma that

OJ

L ILs(x - v)1
V= -co

(_l)s+k" . U
= , Im{elU(X-asHlns(x, u)} cosec -du,

2n ._" 2

where

So

_1- z,

s = I,..., k - I,

s = k,... , r.

where

00

L
V= -00

(_l)'+k
ILs(x - v)1 = (I\ s +Js)'n .

and

Let

f
n U

I I ,s= 0 sinu(x-as+t5)Rens(x,u)cosecTdu

" u
Js = Lcos u(x - as + 15) 1m n sex, u) cosec 2' duo

f" - u
is = 0 cos u(x - as + 15) 1m ns(x, u) cosec 2'du.
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Then by Lemma 1, Js = 1s + 0(1). Let 1s = I 2 ,s + I 3 ,s' where

f.
" A 2

13 s = 1m .os(x, u)-du
, 0 u

= 2A,(x) f" (rn +UY - (rn - UY du
V 0 (rn +uY+ (rn - uY u

113

4A,(x) f1 1 - t
n

dt
= ----2'

V (r-1)/(r+1) 1 + t
n 1 - t

rn - u
putting t =--­

rn+ u

Now it is shown in [4] that

f. 1 1- t
n

dt 1l 4!--n--2=- log n + log-+ y 0(1).
ol+t I-t 2 n

Also

f
(r-I)/(r+I)I-tn dt f<r-1)/(r+1) dt

----= --+0(1)
o 1 + t n 1 - t 2

0 1 - t
2

1
= 2log r + o( 1).

So

Now 12 s = f~ {cos u(x - as + <5) 1m fls(x, u) cosec(u/2) - 1m fls(x, u)
(2/u)}du. Since IImfls(x,u)I:;;;;;IAs(x)I/V, for all n=I,2,3,... and
limn_ oo 1m fls(x, u) = A,(x)/V, for all u E (0, n], we have

I 2•s = As~X) fa" lcosec ~ cos u(x - as + <5) - ~ ldu + 0(1). (20)

Furthermore it follows from Lemma 1 that

B (x) f" uII,s =~ 0 sin u(x - as + 0) cosec 2du + 0(1).

So to sum up,

00 (_l)s+k
~ IL'(x - v)1 = n (II,s + I 2 ,s + I 3,s) + 0(1),

v= -00

(21 )
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where II,S' 12,5 and 13,5 are given by (21), (20) and (19). Thus from (18),

11Y:..rII = M I log n +M 2 +0(1),

where

2 r A (x)
M

1
= max - L (_1)5+k _5_.

O<;x<1 1r 5=1 V

For j = 1,... , r, let

(5)

(22)

flj = (2j - 1)/2r,

= (j - l)/r,

We claim

if n + r is even,

if n + r is odd.

with equality iff aj = flj , j = 1,..., r. (23)

We shall prove (23) only for even nand r, the other cases following
similarly. Now for any x in IR, let

F(x) = ±(-1)S+ I A5(X)
5=1 V

= aocos rnx + a l cos(r - 2) 1rX + ... +ar /2'

Then

F(a j ) = 0, i = 1,..., r.

Now

where V(e 2"ia" ..., e2>tia r ) is V(e 2"ia" ..., e2>tjar ) with the first row replaced by y
with Yo = (_1)"+1 er"ia v , v = 1,... , r. We shall show that

with equality iff aj = flj , j = 1,... , r.

Expanding the determinants by the first row, we have

r ~

tVao - tV = L [er"ia s + i(-1Yl e- 2"ia sV(e 2"iat,..., e2>tia" ... , e2"ia r)

5= 1

(24)
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(where - denotes that this term is to be omitted),

~Z _

= 22..: {I + (-1)' sin rnas } e(r-Z)nia'V(ez"ia l,... , ez";a,, ... , ez"ia r)

s= 1

since

V(e Zn;al ern;as+r+l eZniar) _ eZni(r-Z)a'V(ez"ia , ern;a, eZniar),..., ,..., - ,..., ,... , .

Now a straightforward calculation shows i(l/Z)rv >0 and

Z,(I/Z)r-Ie(r-Z)n/a'V(eZn/al ern/a, e Zn /ar ) >0 s = 1 r,... , ,... , " ..., .

115

So i(I/Z)rV(ao - 1);;::: 0 with equality iff

1 + (-1)' sin rnas = 0,

This gives (24) and hence

s= 1,..., !r.

max IF(x)l;;::: 1
O<;;x<;;l

with equality iffF(x) = cos rnx,

i.e., with equality iff aj = /lj, j = 1,..., r.
We have thus proved (23).
Henceforward we assume aj = /lj, j = 1,..., r. To complete the proof of

Theorem 1 we must show M z is given by (6). Note that the maximum in (22)
is attained for x = Yj' j = 1,... , r, where

Yj = (j - 1)/r,

= (2j - 1)/r,

if n + r is even,

if n + r is odd.

So M 2 equals the maximum over x = Yj' j = 1,..., r, of

where

As(x) fn 1 u 2 I
Is = -V- 0 cosec 2 cos u(x - as + <5) - u \du

Bs(x) fn . U+ -V- 0 sm u(x - as + <5) cosec T du ,

Now a straightforward calculation shows

r I r (_l)s+Hn+r
AS(Yj) = II sin n(fJv - Yj) J]I sin n(fJv - /ls) = r

(25)
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Thus we find (25) takes the same values for all x = Yj' j = I,..., r, and

2 ( 4 ) 1 f" l u 2 (M 2 =- log-+y +- f(u)cosec--- du,
n rn n 0 2 u

where

f(u) =~±Icos u (-2
1

__2s_-_1 )
r s~1 I 2r

+ sin u (+ _2S;; 1 ) cot (2s ~/ )n (

=~ f cos (~_ 2S-I) (u-n)sec (~_ 2S-I) n.
r s71 2 2r 2 2r

From (26) we see

2(4 ) 1M 2= - 2 log - - log r + Y + - I,
n n n

(26)

where I = f~ (j(u) - I) cosec!u du, and so to derive (6) we need show only

1= 2 log r. (27)

We shall prove (27) for even r, the case of odd r following similarly with
a little extra effort. Putting v = u - n, we have

f" 12 0/.2)r coslW - l)v/2r]
1= -)'

o r /;"1 cos l(4i - 1)n/2r]

Now expanding in partial fractions we have

1 ( sec ~ dv.

coslW - l)v/2r]

cos(I/2)v

=~ ±(_I)k+l cosl(2k-I)(2j-l)n/2r] sinl(2k-l)n/2r].
r k~1 coslv/2r] -cosl(2k-l)n/2r]

So

V (1/2)r cosl(2j - l)v/2r]
sec - '\'

2 /;;'1 cos [(2j - 1)n/2r]

=~ f (_I)k+1 cksin[(2k-l)n/2r] ,
r k'-::I cos[v/2r] - cos[(2k - l)n/2r]
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where
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(I/2)r cos [(2k - I )(2j - I )n/2r]
c = \' ,

k /:;"1 cos [(2j - I )n/2r]

Now a straightforward calculation shows

k= I,..., r.

k= I,...,r-I,

1-(' \~ f sin[(2k - l)n/2r] v I
-)0 I r k"-::t cos[v/2r] - cos[(2k - l)n/2r] sec 2\ dv

= 2 log r + 2 log sin(n/2r)

;-, 1tan[(2k - l)n/4r] + tan(n/4r) !+ 2 ) log
k""""2 tan[(2k - l)n/4r] - tan(n/4r)

= 2 log r + 2 log sin(n/2r) + 2 flog 1 . tn
(kn/2r) I

k""""2 sm (k - I )n/2r] \

= 2 log r.

This completes the proof of Theorem 1.
We note that when r = I, the statement of Theorem I requires that a 1 =°

if n is even and a I = ~ if n is odd. A modification of the above calculations
produces the following result for r = I and any at in(-1, 1) if n is even, any
at in (0, I) if n is odd.

If

n even,

n odd,

then Eq. (5) holds with M t = 2/n and

where
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